Hybridization and hybrid speciation (Schumer et al. 2014)

- How important is hybridization to plant evolution?
 - o Vocabulary slide 4
 - How frequent is hybridization in plants? *slide 5*
 - What are the consequences of hybridization? *slides 6–16*
 - Genetic assimilation/merging, slide 7
 - Hybrid zones, slide 8
 - Adaptive introgression, slide 9
 - Reinforcement/reproductive character displacement, slides 10 & 11, examples 12–16
- How does hybrid speciation occur?
 - What are the kinds of hybrid speciation? *slide 17*
 - What models do we have to explain homoploid hybrid speciation? slides 19–23
 - What are favorable conditions for homoploid hybrid speciation?
 (and examples) slides 24–26
 - o Ecology's role in hybrid speciation *slide 27*
 - The creation of novel or extreme phenotypes via hybridization *slides 29-30*

Macroevolution (Kafer et al. 2014)

- What is the scope of macroevolutionary research? *slides 2-3*
- Diversification
 - What are net diversity/diversification rate and how do we calculate them? slide 4
 - What drives macroevolutionary patterns?
 - Intrinsic factors example slide 5-6
 - Extrinsic factors *slide* 9
 - Biotic (Red Queen hypothesis) *slide 10-11*
 - Abiotic (Court Jester hypothesis) *slide 12-13*
 - O Why are some clades so diverse?
 - What are adaptive radiations? slides 17-19, examples 20-22, counter-example 23-25
 - What is a key innovation? slide 26-40 and paper
 - Can we identify a key innovation to explain Darwin's abominable mystery? What are some possibilities? What are some caveats?

Plant conservation genetics (Gray et al. 2016)

- How many of the world's species are in danger of extinction? slide 3
 - o Major causes and importance? slides 4-6
 - O Status in Canada slides 7–10
- Conservation genetics
 - What is conservation genetics? *slide 11*
 - Factors that influence population dynamics *slides 12 & 13*
 - What role does gene flow play?
 - Inbreeding depression *slides* 14-16
 - Outbreeding depression *slides 17*
 - Genetic swamping and demographic swamping slide 18
 - How do these differ?
 - Transgene escape *slide 21, example 22-25*
 - When will genes escape?
 - o What taxonomic unit do conservationists care about? slide 27

Climate change and plants (Parmesan & Hanley 2015)

- What are the predicted effects of climate change? *slides 3–5*
- How will species respond to climate change? *slides 6 and 20*
 - o Migration, *slides 7*, 9–11
 - How fast can species migrate?
 - What are the limits to migration?
 - o Phenotypic plasticity, *slides 12-13*
 - What are the limits to plasticity?
 - How can plasticity slow adaptation?
 - Evolutionary adaptation, slides 14-19
 - How can adaptation prevent extinction via climate change?
 slide 15 and the paper
 - How fast can adaptation change a population and what factors affect this? slide 18
 - What is a sustainable rate of adaptation? *slide 16*
 - Is there evidence for adaption to climate change? slides 19
 - o Extinction. slide 22
 - How can our knowledge inform management strategies to prevent extinction? slide 21