Yacón (Smallanthus sonchifolius) relative of sunflower.

Grown in Andes for its crisp, sweettasting tuberous roots.

Roots contain inulin, an indigestible sugar, which means that although they have a sweet flavour, the roots contain fewer calories than would be expected.

Karyotypic changes and speciation

Chromosomal speciation

Big Questions

- Are chromosomal rearrangements important in speciation?
- How do chromosomal rearrangements become established in natural populations?

Chromosomal Speciation

- Caused by chromosomal rearrangements
- Fixed differences between species
- > 95\% of plant and animal species differ in their karyotype White (1978)
- How does this cause reproductive isolation?

Inviable pollen due to rearrangements

- Reduced fertility in hybrids
- Reduction in recombination
(reproductive isolation/speciation about reducing interspecific recombination)

Karyotype - the number and appearance of a set of chromosomes

Species range and phylogenetic relationship

b

Divergence time (MYA)

Chromosomal and genetic differentiation between two Helianthus species (Barb et al. 2014)

Linkage groups (chromosomes)

Fst vs Djost (ANN vs ARG)

Djost distribution (ANN vs ARG)

$\begin{array}{ll}\square & \text { syntenic positions } \\ \square & \text { rearranged positions }\end{array}$

Clarkia biloba
Clarkia lingulata

- Differ by a reciprocal translocation and two paracentric inversions
- C. lingulata $2 \mathrm{n}=9$ whereas C. biloba $2 \mathrm{n}=8$
- Hybrids are readily made, but have near-complete sterility

Types of Rearrangements

1. Inversions

- paracentric (centromere outside inversion)
- pericentric (centromere inside inversion

or
$A B C D B E F \rightarrow A-D \quad C \quad B \quad B$

End of Meiosis I End of Meiosis II
$\xrightarrow[A]{A} \quad B \quad C \quad D$

What kind of rearrangement is responsible for meiotic abnormality seen below?

Heslop-Harrison 2013

Types of Rearrangements

1. Inversions (continued)

Fertility effects

- up to 50% of gametes carry duplications or deficiencies
- may be compensatory mechanisms
(a) in Drosophila recombinant products shunted into polar bodies
(b) In deer mice abundant pericentromeric heterochromatin reduces crossing over

Recombination effects

- recombination suppressed within inverted region

Types of Rearrangements

2. Chromosome fusions / fissions

Fertility effects

- none to mild

Recombination effects

- none expected

Types of Rearrangements

3. Translocations

- reciprocal
- nonreciprocal

ABC O J K
G H I O D E

alternate segregation

adjacent I segregation

adjacent II segregation

Predicted meiotic pairing in translocation heterozygote

Types of Rearrangements

3. Translocations con't

Fertility effects

- up to $2 / 3$ of gametes will carry duplications or deficiencies
- fertility effects slightly mitigated in some plant species by non-random meiotic configurations

Recombination effects

- recombination suppressed near centromere
- considerable recombination in distal regions of chromosomes

How can karyotype diverge?

-Strong underdominance (heterozygotes < fit than homozygotes)
-Establishment difficult
-Strong reproductive barrier

How can karyotype diverge?

Weak underdominance
-Establishment easier
-Weak reproductive barrier

How can karyotype diverge?

paradox: strong underdominance - establishment unlikely weak underdominance - weak reproductive barrier

1. Drift (small population size, founder effects, kin founding)

- Unlikely in outcrossers: fastest rates of chromosomal evolution recorded in taxa with very large populations (Strasburg and Rieseberg 2008)

2. Selection/migration balance (selection for multiple locally adapted alleles will favor establishment of rearrangements that limit recombination among them)

How can karyotype diverge?

2. Selection/migration balance (selection for multiple locally adapted alleles will favor establishment of rearrangements that limit recombination among them)

How can karyotype diverge?

3. Rearrangements weakly underdominant individually but strongly underdominant in combination (chromosomal fusions)

Ancestral population
Derived populations

How can karyotype diverge?

4. Meiotic Drive

Genic Drive - an interaction between two genetic ele-ments-a drive allele and a target locus-disables a large proportion of gametes carrying a sensitive target allele.

Chromosomal Drive - chromosomal drive, some property of the general structure or size of a chromosome bestows upon it a replication or orientation advantage.

Chromosomal Rearrangements as Recombination Modifiers

Reduced recombination may:
A

1) Increase size of region protected from gene flow

B

C

D

Stages in Speciation

Chromosomal Rearrangements as Recombination Modifiers

Reduced recombination may:
2) Facilitate accumulation of hybrid incompatibilities (or other species differences) in the presence of gene flow
3) Promote sympatric or parapatric speciation by creating associations between alleles under divergent natural selection and those that cause assortative mating

Chromosomal Rearrangements as Recombination Modifiers

Chromosomal rearrangements and reproductive isolation in Mimulis (Fishman et al. 2013)

Unanswered Questions

- What are the effects of translocations on recombination recombination rates?
- Is chromosomal drive common?
- How frequent are small-scale chromosomal rearrangements in plant evolution?

