PLANT OF THE DAY!

Camellia sinensis – tea

Native to East and South Asia

tea consumption dates to the 10th century BC

Big Questions

- What is speciation?
- What kinds of reproductive barriers can isolate plant species?
- Which kinds of barriers are most important during speciation?
- How do reproductive barriers evolve?

Outline

- 1. Speciation what is it?
- 2. Reproductive isolation
- 3. Drift versus Selection
- 4. Geography of Speciation

Speciation: What is it?

"Under the BSC*, the nebulous problem of 'the origin of species' is instantly reduced to the more tractable problem of the evolution of isolating barriers."

Coyne and Orr 2004

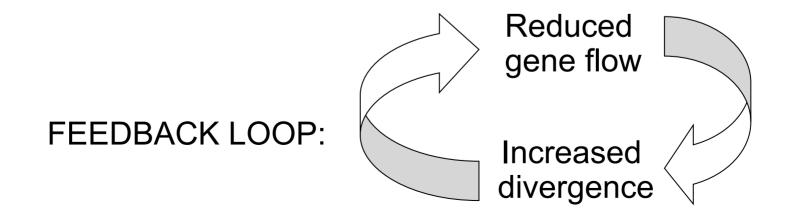
*Biological Species Concept

Speciation: What is it?

For our purposes:

Speciation refers to the evolution of barriers to gene flow between previously interbreeding populations.

These barriers are thought to evolve primarily as the by-product of genetic drift or selection.


Reproductive Isolation

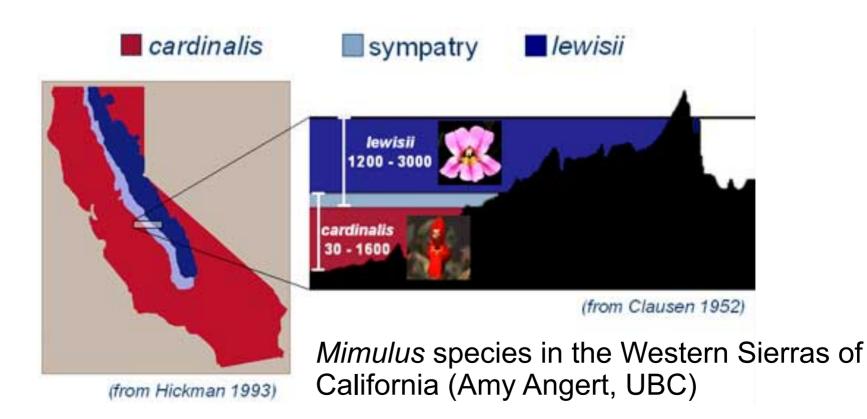
a.k.a. barriers to gene flow

Definition: "Biological properties of individuals which prevent the interbreeding of populations that are actually or potentially sympatric" (Mayr 1970).

Role: Reduce interspecific gene flow, thereby facilitating the accumulation of genetic differences through drift or selection.

Barrier Components

Prepollination barriers limit the transfer of pollen from individuals of one species to styles of another.


Postpollination prezygotic barriers prevent heterospecific pollen from successfully fertilizing ovules.

Intrinsic postzygotic barriers result from genetic incompatibilities and are mostly independent of the environment (e.g., hybrid sterility or breakdown).

Extrinsic postzygotic barriers result from genotype by environment interactions (e.g., ecological isolation).

Ecogeographic Isolation/ Immigrant Inviability

Ecological divergence often contributes to spatial isolation. This is probably most important reproductive barrier in plants.

Temporal Isolation

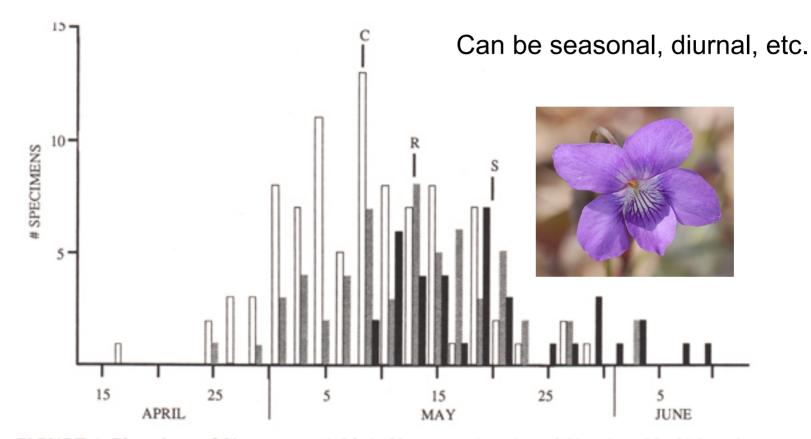


FIGURE 4. Phenology of V. conspersa (white), V. rostrata (gray), and V. striata (black) based on specimens at MICH from south-central Michigan; initials of specific epithets indicate means of collection dates for each species.

Mechanical Isolation

Mechanical isolation occurs because the sexual organs (e.g. flower structures) of different species are incompatible.

Platanthera bifolia

Platanthera chlorantha

Schiestl and Schlüter 2009

Pollinator Isolation

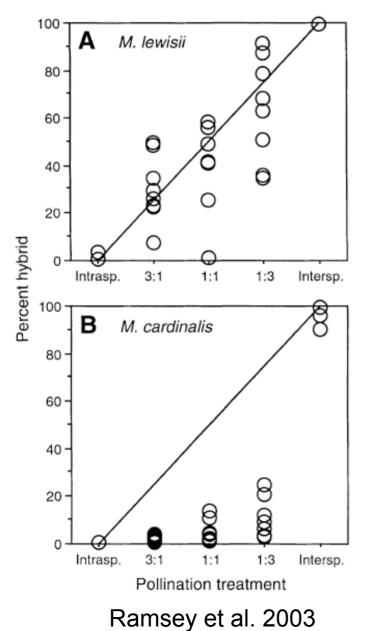
Mimulus cardinalis

Mimulus lewisii

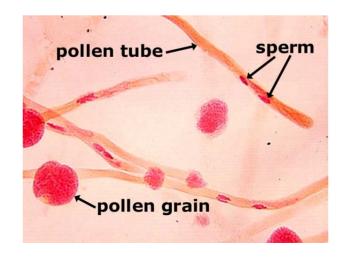
Bradshaw and Schemske 2003

Mating System Isolation

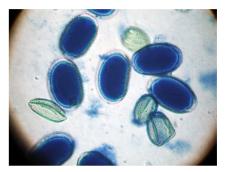
Mimulus guttatus



Mimulus nasutus


Martin and Willis 2007

Post-pollination, Prezygotic Isolation


Conspecific pollen precedence conspecific pollen often outcompetes heterospecific pollen (perhaps due to sexual selection).

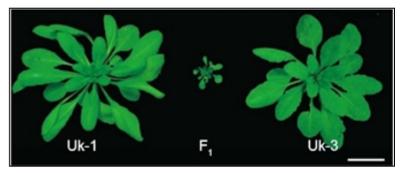
Pollen-ovule incompatibilities

(Intrinsic) Postzygotic Isolation

Hybrid sterility: hybrids have reduced fertility



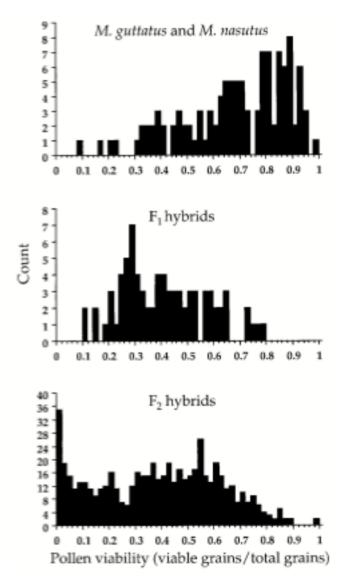
Hybrid pollen sterility


(Intrinsic) Postzygotic Isolation

Hybrid sterility: hybrids have reduced fertility

Hybrid inviability: hybrids have reduced viability

Hybrid pollen sterility


Hybrid inviability (Bomblies et al. 2007)

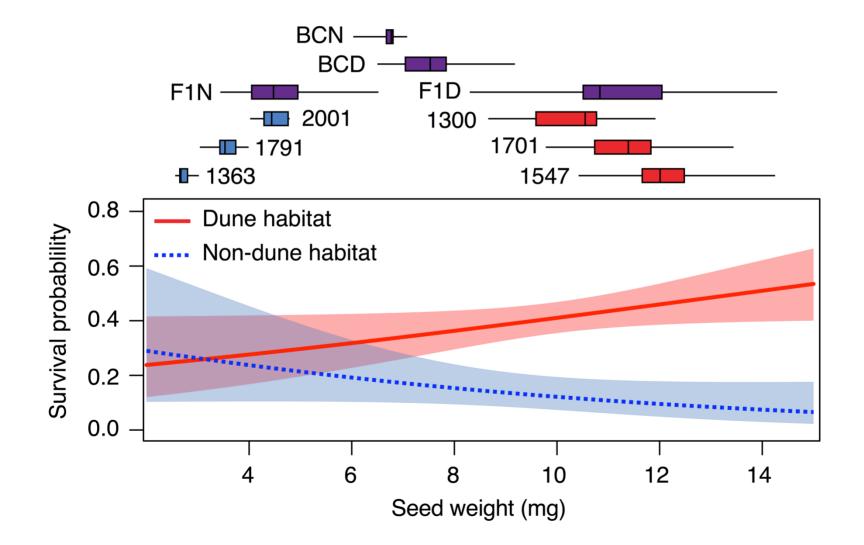
(Intrinsic) Postzygotic Isolation

Hybrid sterility: hybrids have reduced fertility

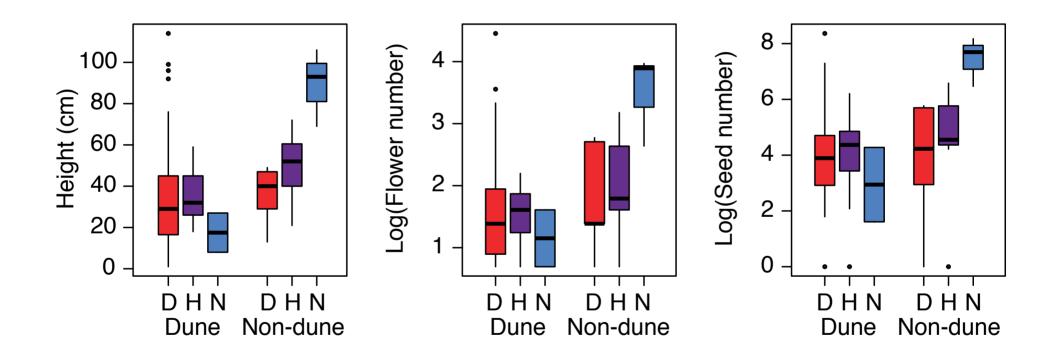
Hybrid inviability: hybrids have reduced viability

Hybrid breakdown: later generation hybrids have reduced viability or fertility

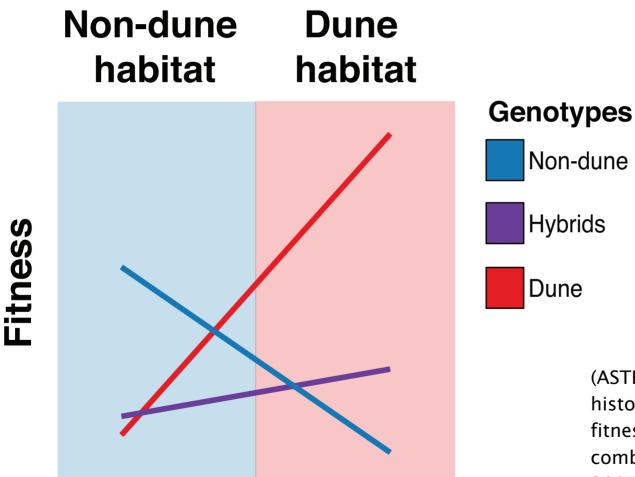
Fishman and Willis 2001

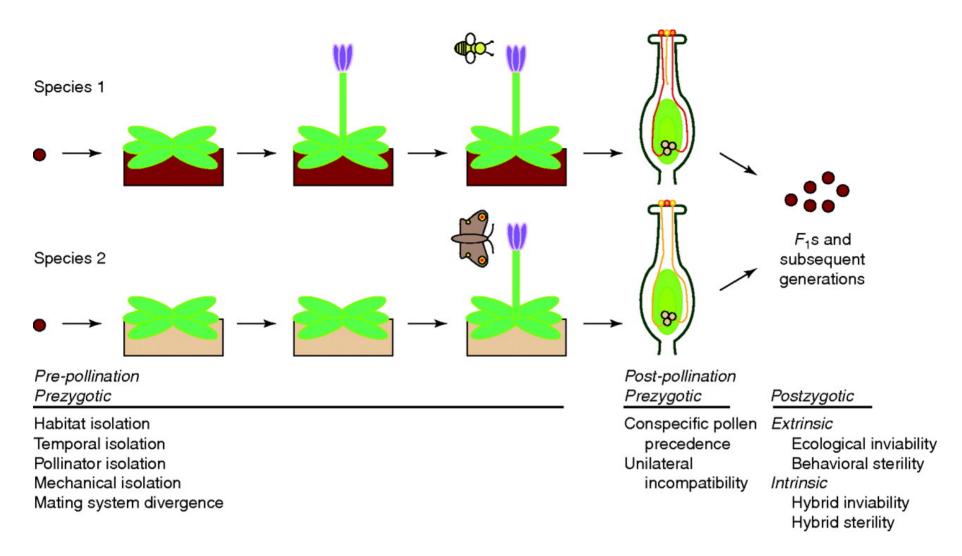

(Extrinsic) Postzygotic Isolation

Ecological isolation: hybrids are not as fit (have reduced fertility or viability) as parents in parental environments.

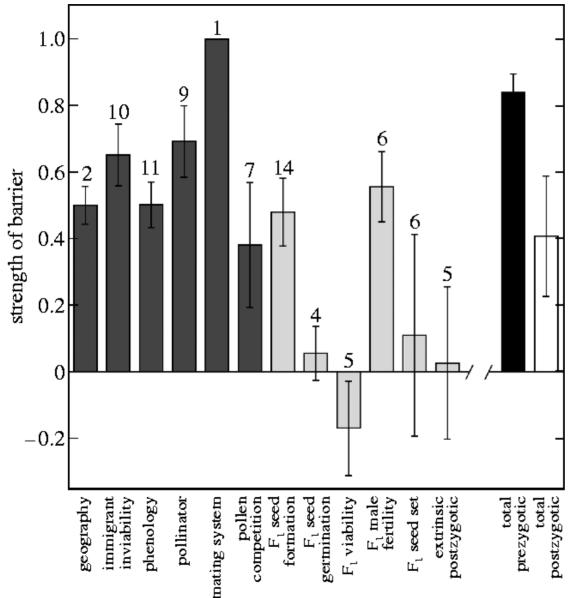


Ostevik et al. 2016


Large Seeds Favored in Dune Habitat


But, non-dune plants produce more flowers and seeds on sand sheet

And hybrids are selected against in both parental habitats



(ASTER models for life history analysis allow fitness components to be combined: Geyer et al. 2007)

All else being equal, early-acting reproductive barriers will contribute more to isolation than late-acting barriers

Rieseberg and Blackman 2010

Prezygotic isolation is approximately twice as strong as postzygotic isolation in flowering plants.

Also, post-mating barriers are much more likely to be asymmetric than premating barriers. Which reproductive barriers were important during speciation?

Which reproductive barriers are important during speciation?

e.g. Find out which barriers arise early by looking at incipient species

Incipient species are populations that are in the process of diverging to the point of speciation but can still exchange genes

ECOLOGICAL REPRODUCTIVE ISOLATION OF COAST AND INLAND RACES OF *MIMULUS GUTTATUS*

David B. Lowry,^{1,2,3} R. Cotton Rockwood,⁴ and John H. Willis^{1,2}

Isolating barrier	Strength of barrier	
	Coast	Inland
Temporal flowering isolation among habitats (RI _{FA})	1.000	1.000
Selection against immigrants (RI1)	0.874	0.999
Temporal flowering isolation in sympatry (RI _{FS})	0.895	0.00 ¹
Intrinsic postzygotic isolation (RIIP)	0.023	0.023
Extrinsic postzygotic isolation (RI _{EP})	-1.801	0.233

¹This was calculated for one surviving coast plant in inland habitat.

How do these barriers evolve?

Drift versus Selection

Laboratory Experiments: Divergent Selection (no gene flow)

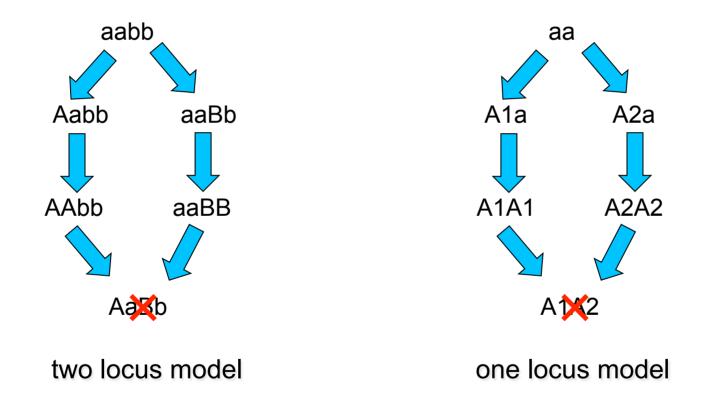
Taxon	Isolation*	Reference
Drosophila pseudoobscura Drosophila pseudoobscura Drosophila melanogaster Drosophila melanogaster Drosophila melanogaster Musca domestica Musca domestica Drosophila willistoni Drosophila melanogaster Drosophila melanogaster Drosophila simulans Drosophila pseudoobscura	prezygotic prezygotic prezygotic prezygotic postyzgotic prezygotic prezygotic prezygotic both prezygotic postzygotic prezygotic prezygotic	Ehrman, 1964, 1969 del Solar, 1966 Barker & Cummins, 1969 Grant & Mettler, 1969 Robertson, 1966a,b Burnet & Connolly, 1974 Soans et al., 1974 Hurd & Eisenberg, 1975 de Oliveira & Cordeiro, 1980 Kilias et al., 1980 Ringo et al., 1985 Koepfer, 1987 Dodd, 1989

*Prezygotic isolation failed to evolve in four other experiments; postzygotic isolation failed to evolve in one other experiment.

Drift versus Selection

Laboratory Experiments: Drift / Population Bottlenecks (no selection and no gene flow)

Taxon	Isolation	Reference
Drosophila melanogaster Drosophila pseudoobscura Drosophila melanogaster Drosophila pseudoobscura Drosophila silvestris Drosophila pseudoobscura Musca domestica Drosophila pseudoobscura	weak prezygotic none none pre (3/8) none pre (1/8) pre (1/8) pre (1/16) pre (4/628)	Koref-Santibanez et al., 1958 Powel & Morton, 1979 Averhoff & Richardson, 1974 Powell, 1979* Ahearn, 1980 Dodd and Powell, 1985* Ringo et al., 1985* Meffert & Bryant, 1991** Moya et al., 1995
, , Drosophila melanogaster Drosophila pseudoobscura	retests (0) none (0/50) none (0/78)	Rundle et al., 1998 Rundle, 2003


*hybrid base population**not significant after correction for multiple tests

Genetics of Speciation

Darwin's Dilemma: How could something as maladaptive as hybrid sterility or inviability evolve by natural selection?

Genetics of Speciation

Darwin's Dilemma: How could something as maladaptive as hybrid sterility or inviability evolve by natural selection?

Bateson-Dobzhansky-Muller (BDM) incompatibilities

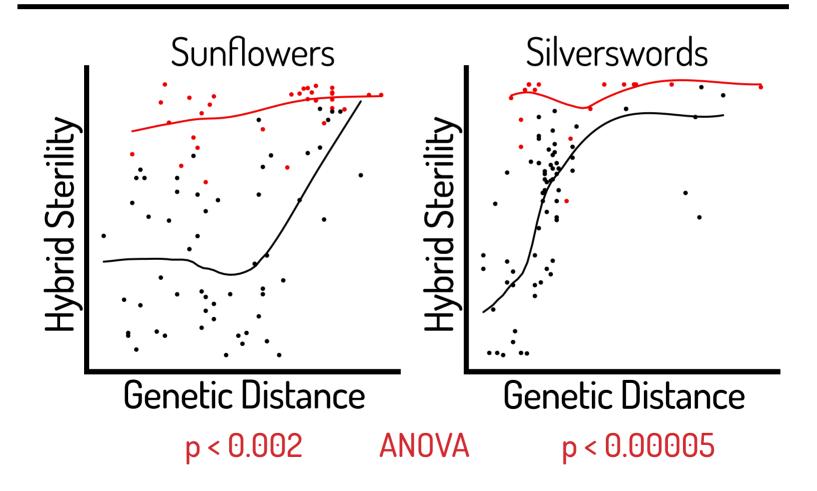
Examples of BDM incompatibilities

Phenotype / Organism(s)	Genes / Characteristics	References
Hybrid Seed lethality	PHERES1, a MADS-box gene	Josefsson et al. 2006
Arabidopsis	TTG2, WRKY transcription factor	Dilkes et al. 2008
Cytoplasmic male sterility	> 15 genes cloned /	Hanson &
<i>Oryza, Helianthus, Mimulus</i> , etc.	chimeric orfs in mtDNA	Benolila 2004
Restoration of CMS	7 genes cloned; mitochondria-	Hanson &
Maize, <i>Oryza, Petunia,</i> raidish	targeting PPR proteins	Benolila 2004
Hybrid inviability (hybrid necrosis) <i>Arabidopsis,</i> tomato, lettuce	Disease resistance genes	Bomblies et al. 2007 Kruger et al. 2002

Cytoplasmic male sterility in *Petunia hybrida*

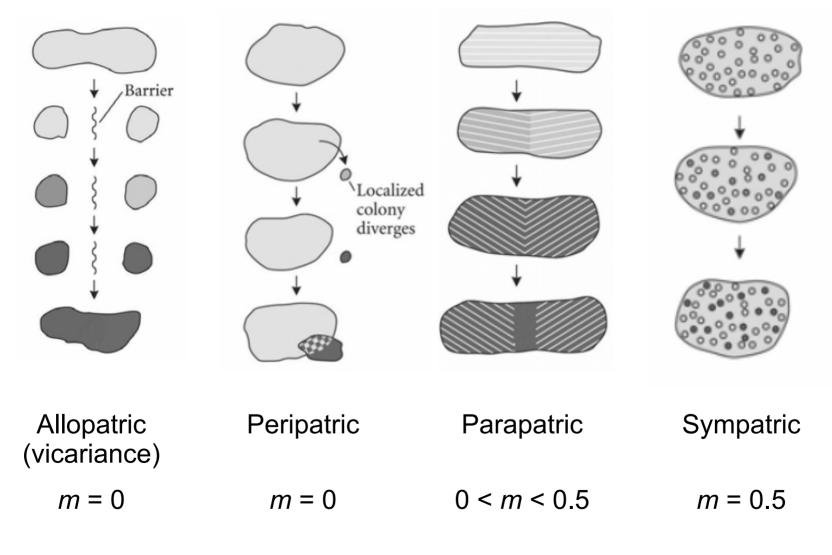
Hybrid necrosis in tomato

Genetics of Speciation


Speciation genes – genes that contribute to the cessation of gene flow between populations

Some generalizations from speciation genes found in plants so far:

- Disease resistance genes often involved (e.g., NBS-LRR family)
- Loss of function mutations are surprisingly frequent (e.g., PPR genes)
- Cytoplasmic factors frequently involved (e.g., CMS)
- Divergence mainly due to positive selection (either balancing or directional)
- Substantial intraspecific variation


Other patterns in the evolution of reproductive isolation

Annual hybrids
Perennial hybrids

Owens and Rieseberg 2013

Geography of Speciation

m is the initial level of gene flow

Futuyma 2009

Geography of Speciation

Allopatric and parapatric speciation are common (Wallace)

Sympatric speciation is controversial (Darwin)

Example of allopatric speciation in Datisca

Sympatric Speciation

Problems:

1. Antagonism between selection and recombination — recombination breaks up associations between alleles under disruptive natural selection and those causing assortative mating.

2. Sympatric species must coexist.

3. Hard to prove that currently sympatric species have not been allopatric in past.

One of the best examples of sympatric speciation is palms on Lord Howe Island

Savolainen et al. 2006

Disruptive selection

Some palms survive better in volcanic acidic soils whereas others perform better in basic calcareous soils

Palms growing in calcareous soil tend to flower later than palms growing in volcanic soils Sympatric speciation occurs most easily when traits under disruptive selection (e.g. soil preference) and assortative mating (e.g. flowering time) are correlated genetically.

When assortative mating and disruptive selection are combined in the same trait, it is called a **magic trait**.

(somewhat) Unanswered Questions

- Is there a pattern to the genetic architecture of reproductive isolation (e.g. many vs. few loci, under selection or evolving neutrally)?
- Which reproductive barriers are most important early in speciation? Late in speciation?
- How often do reproductive barriers evolve as a by-product of selection? By drift? By direct selection (e.g. reinforcement)?